Social Icons

Pages

Monday 30 November 2009

Poll: What type of adhesive system do you use in your practice?

Please, select one or more answers from the poll in the sidebar.

Adhesive systems are nowadays classified according to the number of clinical application steps and adhesion strategy. This is one of the most widely accepted classifications in both clinical practice and scientific literature.



(a) Three-step etch-and-rinse systems: acid etching with phosphoric acid followed by the application of primer and bond from separate bottles;
(b) Two-step
etch-and-rinse systems: acid etching with phosphoric acid followed by the application of primer and bond which are in one bottle;
(c) Two-step self-etch systems: self-etching primer and bond are in separate bottles;
(d) One-step self-etch systems (also known as "all-in-one" systems): all components are in one bottle

Feel free to leave a comment about your experience with any particular adhesive system.


In clinical practice, I'm using a two-step etch-and-rinse system. In PhD research, I've studied the degree of conversion and elution of unreacted monomers from a wide range of adhesive systems. Some of these results have been published in scientific dental journals and some are in press and will be published soon.

Though one-step (all-in-one) self-etch systems are currently marketed, results from many in vivo and in vitro studies suggest that these systems often have inferior properties compared to two-step self-etch and etch-and-rinse systems


Tuesday 24 November 2009

Textbook of Restorative Dentistry

It is my pleasure and honour to announce that the Textbook of Restorative Dentistry (original title: Osnovi restaurativne stomatologije) has been published by my professors at Belgrade University School of Dentistry Dept. of Restorative Dentistry and Endodontics: Slavoljub Zivkovic, Mirjana Vujaskovic, Katarina Pap, Djurica Grga, Aleksandra Lukic and Nevenka Teodorovic.

This is the official textbook for undergradute students but may be very helpful to dental practitioners who have some questions regarding restorative procedure.

The book is divided in four parts. Part I presents the biology of pulp-dentine complex, its ultrastructure, but also important physiological and biochemical aspects. This chapter also explains the basics of caries etiology, pathogenesis and diagnostics.

Part II details the equipment and instruments for restorative treatment as well as techniques for caries removal.

Part III explains cavity preparation procedures according to traditional Black's principles and the adhesive cavity preparation for resin-based materials. Cavity preparation for indirect restorations is also explained. Some basic gnatological requirements in restorative treatment are mentioned in Part III.

Part IV addresses all dental materials in restorative dentistry. It contains basic clinical characteristics of materials for temporary fillings, for pulp cappings, amalgam, glass-ionomer cements, resin-based composite materials and adhesive systems as well as materials for indirect restorations.

Thursday 19 November 2009

News from jobs.ac.uk

Research Fellow in Tooth and Peridontal Tissue/Biomechanics/Biomedical Engineering
(Click for more information)

Faculty of Engineering
University of Leeds - School of Mechanical Engineering

Salary: £29,704 to £35,469. It is likely that an appointment will be made at or below £31,513 p.a.

Application deadline: 8 December 2009

Monday 16 November 2009

Wiley-Blackwell books: Dental Materials at a Glance [20% off]

A couple of days ago, I got an email from Wiley-Blackwell offering certain dental books at discount, 20% off the original price.

Among the books at discount is "Dental Materials at a Glance" by J. Anthony von Fraunhofer, Professor Emeritus at the Baltimore College of Dental Surgery Dental School, University of Maryland and formerly was Professor and Director of Biomaterials Science in the Department of Oral and Maxillofacial Surgery.

I'm not quite sure why I got this offer, either because I subscribed to the newsletter from Wiley-Blackwell or because I already purchased at least one book. Anyway, I'm considering to buy Dental Materials at a Glance since it's now only $27.19. Having bought another book from this "At a Glance" series (Medical Statistics at a Glance), I assume this book about dental materials is written in a similar succinct and readable way with many useful illustrations.

It contains 28 chapters on 72 pages, i.e. 2-3 pages per chapter, which seems to be the pattern for all books from this series. According to the table of contents, the first part looks like a glossary of scientific terms relevant to any dental materials scientist. The second part seems to be a short overview of important properties of contemporary dental materials. There's also a free downloadable chapter HERE.

Thursday 12 November 2009

Nano-filled resin-modified glass-ionomer cement: "nano-ionomer" Ketac N100

In addition to conventional and resin-modified glass-ionomer cements, a nano-filled resin-modified glass ionomer cement, or “nano-ionomer”, was developed by 3M ESPE a couple of years ago – Ketac N100.

It is stated by the manufacturer that indications for the use of this nano-ionomer include primary teeth restorations, small Class I, Class III and IV, temporary restorations, filling defects and undercuts, “sandwich” technique with resin-based composites, core build-ups with min 50% of the remaining tooth for support.

The nano-ionomer is based on the acrylic and itaconic acid copolymers necessary for the glass-ionomer reaction with fluoroaluminosilicate (FAS) glass and water. The nano-ionomer also contains a blend of resin monomers, BisGMA, TEGDMA, PEGDMA and HEMA which polymerize via the free radical addition upon curing and it is stated that the primary curing mechanism is by light activation. The originality of this glass-ionomer cement is the inclusion of nano-fillers which constitute up to two thirds of the filler content (circa 69 wt%).

Other advantages stated by the manufacturer are a simplified procedure which requires the priming but not the separate conditioning step and a precise dispensing and mixing “clicker” mechanism.

In spite of its uniqueness amongst other dental formulations, the nano-ionomer has not been investigated to a greater extent in the scientific dental literature. Medline search using the keyword “Ketac N100” resulted in only 4 papers in international peer-reviewed journals. Another paper was found using the keyword “nano-ionomer”. It is my pleasure to mention that the first of these 5 papers was done in Serbia by my colleagues from the Paediatric Dept of the School of Dentistry, Belgrade and the Dept. of Dentistry School of Medicine, Novi Sad.

It has been reported that fluoride concentration on material surface is similar for Ketac N100 and other glass-ionomer cements from the Fuji “family” but Ketac N100 showed less porosities and surface cracks than Fuji materials (Markovic et al 2008).

A study on bonding orthodontic brackets showed significantly lower shear bond strength for Ketac N100 compared to a conventional light-cure orthodontic bonding adhesive (Transbond XT). However, it has been suggested that this nano-ionomer may be used for bonding orthodontic brackets since the obtained shear bond strength is within clinically acceptable range (Uysal et al. 2009).

Another study using the shear bond strength as an adhesion parameter showed that Er:YAG laser dentine pre-treatment results in lower bond strength values compared to acid etching or a combined acid-etching and laser pre-treatment (Korkmaz et al. 2009).

A study on microleakage around Class V cavities showed that Er:YAG preparation results in greater microleakage than a conventional cavity preparation with a bur when a nano-ionomer (Ketac N100) and a nano-composite (Filtek Supreme XT) were used as restorative materials (Ozel et al. 2009).

In a study by Leuven BIOMAT Research Cluster it has been concluded that Ketac N100 “bonded as effectively to enamel and dentin as a conventional glass-ionomer (Fuji IX GP), but bonded less effectively than a conventional resin-modified glass-ionomer (Fuji II LC). Its bonding mechanism should be attributed to micro-mechanical interlocking provided by the surface roughness, most likely combined with chemical interaction through its acrylic/itaconic acid copolymers” (Coutinho et al. 2009).

More research is needed to investigate other mechanical properties of the nano-ionomer, its biochemical stability in the oral environment, fluoride release etc. Ultimately, well-designed randomized clinical trials will reveal the longevity and anti-cariogenic effect of this material in clinical conditions.

References:
  • Markovic DLj, Petrovic BB, Peric TO. Fluoride content and recharge ability of five glassionomer dental materials. BMC Oral Health 2008; 28:8-21.
  • Uysal T, Yagci A, Uysal B, Akdogan G. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding? Eur J Orthod 2009; Apr 28 [epub ahead of print]
  • Korkmaz Y, Ozel E, Attar N, Ozge Bicer C. Influence of different conditioning methods on the shear bond strength of novel light-curing nano-ionomer restorative to enamel and dentin. Laser Med Sci 2009; Aug 18 [epub ahead of print]
  • Ozel E, Korkmaz Y, Attar N, Bicer CO, Firatli E. Leakage pathway of different nano-restorative materials in class V cavities prepared by Er:YAG laser and bur preparation. Photomed Laser Surg 2009; 27:783-789
  • Coutinho E, Cardoso MV, De Munck J, Neves AA, Van Landuyt KL, Poitevin A, Peumans M, Lambrechts P, Van Meerbeek B. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer. Dent Mater 2009; 25:1347-1357.

Sunday 8 November 2009

Mineral trioxide aggregate (MTA) in endodontics

Mineral trioxide aggregate (MTA) is a mixture of a refined Portland cement and bismuth oxide, and also contains trace amounts of SiO2, CaO, MgO, K2SO4, and Na2SO4. MTA was first described for endodontic applications in the scientific literature in 1993. Nowadays, there are two forms of MTA on the market, the traditional gray MTA (GMTA) and white MTA (WMTA), which was introduced in 2002. WMTA has less Al2O3, MgO, and FeO and, also, smaller particles than GMTA.

MTA is prepared by mixing the powder with sterile water in a 3:1 powder/liquid ratio. This results in the formation of a colloidal gel that solidifies to a hard structure in approximately 3–4h. It is believed that moisture from the surrounding tissues favours the setting reaction.

Similar or less microleakage has been reported for MTA compared to traditional endodontic sealing materials [gutta-percha and pastes] when used as an apical restoration, furcation repair, and in the treatment of immature apices. 3mm of MTA is recommended as the minimal amount against microleakage and 5mm in the treatment of immature apices. In vitro and in vivo studies support the biocompatibility of freshly mixed and set MTA when compared to other dental materials

Clinical applications of MTA include:
pulp capping,
pulpotomy dressing,
root-end filling,
root repair [resorption and perforations] and
apexification.

Clinical prospective studies suggest that both GMTA and WMTA have similar results as traditional calcium hydroxide in non-carious mechanical pulp exposures in teeth with normal pulp tissue. However, further clinical studies are needed, particularly involving pulp exposures in carious teeth.

Clinical prospective studies using MTA as pulpotomy dressings for primary and permanent teeth reported similar or better results for MTA materials compared to formocresol or calcium hydroxide in the formation of dentine bridges and continued root development. Histological analysis has suggested a more homogenous and continuous dentine bridge formation by MTA than calcium hydroxide at both 4 and 8 weeks after treatment and less inflammation associated with MTA than calcium hydroxide.

There are several case reports in which MTA has been successfully used to repair horizontal root fractures, root resorption, internal resorption, furcation perforations and apexification and/or apexogenesis which was confirmed clinically and radiographically.

Overall results on the use of MTA in endodontics are favourable, but more well-designed and controlled clinical longitudinal studies are needed to allow systematic review and confirmation of all suggested clinical indications of MTA.

You may be interested in a list of free full text scientific articles published in international peer-reviewed journals.

Tuesday 3 November 2009

Biocompatiblity of resin-based materials: Bisphenol-A

Bisphenol-A is an organic compound with two phenol functional groups, commonly used in the production of many plastic products. Studies have shown that bisphenol-A may have adverse health effects such as hormonal, developmental, neurological as well as carcinogenic.

In spite of this, bisphenol-A may be part of dental resin-based materials as a direct ingredient, as a by-product of bio-degradation of other ingredients or as a trace material left-over from the manufacture of other ingredients. Though bisphenol-A is rarely used as a direct ingredient in dental composites, adhesives or sealants, it is a starting ingredient in the manufacture of the most commonly used resin - BisGMA. Also, some other, less frequently used resins, such as Bis-DMA, are also produced using bisphenol-A.

Concerns about bisphenol-A have been raised since studies have shown that various components of dental composites, adhesives and sealants may leach out and have potential local or systemic adverse effects. An in vivo study using an ELISA system showed that up to 100 ng/ml of bisphenol-A may be released into saliva from resin-based composites immediately after placement (Sasaki et al. 2005). Also, a more recent study showed that BisGMA, but also BisGA and BisDMA, all bisphenol-A - based monomers, may leach out from in vivo placed composite restorations (Uzunova et al. 2008). On the other hand, no traces of bisphenol-A were found from chemically and light-cured orthodontic adhesives after in vitro accelerated aging and elution (Eliades et al. 2007).

Over the past few years, both the FDA and ADA have supported research on biocompatibility and safety of resin-based materials containing bisphenol-A. Both organizations issued statements in 2007 (FDA) and 2008 (ADA) that the low-level of BPA exposure that may result from dental materials poses no known health threat. However, further research on this subject is encouraged by the ADA.

References:
  • Sasaki N, Okuda K, Kato T. Salivary bisphenol-A levels detected by ELISA after restoration with composite resin. J Mater Sci: Mater in Med 2005;16:297-300.
  • Uzunova Y, Lukanov L, Filipov I, Vladimirov S. High-performance liquid chromatographic determination of unreacted monomers and other residues contained in dental composites. J Biochem Biophys Methods 2008;70:883-888.
  • Eliades T, Hiskia A, Eliades G, Athanasiou AE. Assessment of bisphenol-A release from orthodontic adhesives. Am J Orthod Dentofacial Orthol 2007;131:72-75.