A long time ago, Michael Buonocore, one of the pioneers of adhesive dentistry, suggested four approaches to overcome the lack of adhesion between filling materials and dental tissues:
"(1) the development of new resin materials with adhesive properties;
(2) modification of present materials to make them adhesive;
(3) the use of coatings as adhesive interface materials between filling and tooth and
(4) the alteration of the tooth surface by chemical treatment to produce a new surface to which present materials might adhere." (Buonocore 1955)
In many respects, this was not only a suggestion but a visionary prediction for modern adhesive dentistry. We now know that all 4 of Buonocore's suggestions have been addressed by dental science which has led to the development of composite resins, adhesive systems and glass ionomer cements. These are three major groups of materials in adhesive dentistry today but there is a number of modifications and subgroups within each of them.
The latest news in adhesive dentistry is the development of self-adhering flowable composite, Vertise Flow by Kerr. Vertise Flow comes as a result of ongoing efforts to rationalize clinical treatment, currently including the use of adhesive systems and resin-based composites to create popular "white" fillings. Although a flowable composite, Vertise Flow clearly indicates the direction of current research by Kerr - the creation of the ultimate self-adhering composite for posterior teeth.
The manufacturer claims that Vertise Flow is based on Optibond technology which utilizes GPDM (glycero-phosphate dimethacrylate), a functional monomer, to obtain etching of enamel and dentine and HEMA, another functional monomer, most commonly used in dental adhesives to enhance wetting and resin penetration in dentine. It has been stated in many scientific papers that BisGMA is the main resin component of Optibond adhesives, though not clearly stated in manufacturer's safety data sheet. It can be expected that Vertise Flow contains BisGMA as the main cross-linking monomer as well.
One of the main questions that a dental material scientist would ask is: How does this material overcome the hydrophobic-hydrophilic mismatch between composite resins and human dentine to produce an interface that would ensure optimal bonding for long-term clinical success? This is currently achieved by the use of adhesive systems as an intermediary layer that is supposed to bridge hydrophobic composite and hydrophilic dentine.
Manufacturer's data suggest that the shear bond strength of Vertise Flow to enamel and dentine is comparable to self-etch adhesive systems. Furthermore, it is suggested that the tooth-restoration interface prevents microleakage, the passage of fluids, bacteria, molecules and ions between the restoration and cavity walls. This phenomenon has been proved to exist for all current resin-based materials due to polymerization contraction of composite resins.
Undoubtedly, Vertise Flow will soon be subjected to a vast array of studies by independent researchers that will address various properties of this material and compare it with other materials on the market. Independent evidence-based results, if in favor of this material, will be the best marketing for Vertise Flow. As always, the last word lies upon the dental practice.
*************************************************************************************
Click here to read the latest post on water sorption, solubility and dimensional changes of resin-based composites including Vertise Flow.